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A semi-analytical procedure is presented for predicting free vibration characteristics of

composite shells of revolution. The approach considers both transverse shear deformation and the
coupling between symmetric and unsymmetric modes in laminated composite shells. Numerical
examples are given for the free vibrations of thin cylindrical laminated composite shells and
moderately thick symmetric cross-ply and antisymmetric angle-ply laminated composite conical
shells. The effects of shear deformation. circumferential wave number. thickness to radius ratio, ply
angle and stacking sequence on natural frequency are discussed.
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NOTATION

Young's modulus

shear modulus

thickness of shell wall

length of the meridian of the element

circumferential wave number

clement shape function defined as N, = 1--yand N, = p with y = s/L
average radius of conical shell

radius of the cone at its small and large ends. respectively
meridional. circumferential and radial coordinates, respectively
displacements in meridional. circumferential and radial directions. respectively
velocities

rotations of the normal to midplane around the s and # axes. respectively
Poisson’s ratio

mass density of material

semi-vertex angle of the cone

circular frequency

vector of nodal displacements

vector of nodal accelerations

matrices of extensional, extensional-bending coupling. bending and transverse shear stiffness
for the laminated shell

defined by eqns (14) and (15). respectively

defined by egn (17)

stiffness matrix for the element

mass matrix for the element

matrix of shape functions for the element

vector of stress couples

vector of stress resultants

matrix of reduced stiffnesses for the ply

matrix of transformed reduced stiffnesses for the ply

vector of shear forces

vector of transverse shear strains

vector of midplane strains

vector of changes in the midsurface curvatures and twist

defined by eqns (&) and (9). respectively

L. INTRODUCTION

The semi-analytical procedure based on separating the variables in a Fourier series along
the circumferential direction and using conical finite elements along the meridional direction
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was first put forward by Grafton and Strome (1963). Later. considerable work was done
to improve. develop and apply this process (Zienkiewicz and Taylor, 1989). The literature
on the subject was well reviewed by Gallagher (1975). It is unnecessary to go into details
here. The processes have been shown to be capable of reducing computational labour
greatly if they are used to deal with the problem of isotropic axisymmetric shells.

The application of fibre-reinforced composite materials to the aerospace industry has
promoted investigation of free vibration of laminated composite shells of revolution (Bert
and Kumar. 1982 Noor and Burton. 1990 : Bismarck-Nasr, 1992). Due to the limitation
of the scope of this study. only the literature on semi-analytical studies of this problem is
reviewed here.

A two-node straight truncated conical clement was first formulated and was applied
to the free vibration of axisymmetric orthotropic shells by Grafton and Strome (1963). A
16 degrees of freedom element based on high-order shape functions was developed and
was used to study the axisymmetric vibration of laminated shells by Shivakumar and
Krisnamurthy (1978). An unaxisymmetric truncated conical element considering the dis-
placement in the circumferential direction was presented and was employed to deal with
laminated composite shells of revolution by Sheinman and Grief (1984). The vibration
analysis of orthotropic cantilever cylindrical shells with axial thickness variation was carried
out by Sivadas and Ganesan (1992). It should be pointed out emphatically that, unlike
1sotropic shells, laminated composite shells are anisotropic and non-homogeneous. They
possess strong extensional-shear. extensional-bending and bending—twisting coupling
effects. Even if both shells and loadings are axisymmetric, vibrations of shells still involve
symmetric and antisymmetric modes. In other words, symmetric and antisymmetric
vibrations of composite shells are coupled with each other. Because the above-mentioned
references do not consider this coupling etfect, they are applicable only to isotropic, ortho-
tropic and cross-plied shells of revolution. In the context of semi-analytical analysis, only
Sheinman and Weissman (1987) considered the coupling between symmetric and anti-
symmetric modes in composite shells of revolution by using the unaxisymmetric conical
element based on the Kirchhotf-Love assumption.

Most of the advanced composites in use to date have a low ratio of the transverse
shear modulus to the in-plane modulus. Application of thick composite shells of revolution
in industries has also been increasing. These shells exhibit strong transverse shear defor-
mation effects. However, few researchers have presented a semi-analytical method con-
sidering both transverse shear deformation and the coupling between symmetric and anti-
symmetric modes.

The main objective of this paper. therefore. is to develop a semi-analytical procedure
for considering both transverse shear deformation and the coupling between symmetric
and unsymmetric modes for predicting free vibration characteristics of laminated composite
shells of revolution. Numerical examples are given for free vibrations of thin laminated
composite cylindrical shells and thick symmetric cross-ply and antisymmetric angle-ply
laminated composite conical shells. The effects of shear deformation. wave number, thick-
ness to radius ratio. ply angle and stacking sequence on natural frequency are discussed.

2 FORMULATION

The Reissner-Mindlin postulates arc adopted to consider transverse shear defor-
mation. In principle. these assumptions are for thick shells, but they are applicable to both
thick and thin shells by using reduced integration (Zienkiewicz and Taylor, 1989). Consider
a laminated composite conical shell shown in Fig. 1. Let ¢ and r denote the semi-vertex
angle and average radius of the cone. respectively. The coordinate system 58z is adopted.
u. v and w are the displacements in the meridional, circumferential and radial directions,
respectively: 8, and f; are the rotations of the normal to the midplane around the s and 8
axes, respectively. Using the Reissner-Mindlin assumptions, the eight strain components
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I Detinttons of vartables for shell approximation.
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are given by the following expression (Cook. 1981)
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where ¢ is the vector of the shell midplane strains. ¥ is the vector of the changes in the
midsurface curvatures and twist and y is the vector of the transverse shear strains.
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The constitutive relations for a laminated shell can be written as (see Appendix A):

01 (&
0 Jx , 4)
Ally

where N, M and S are vectors of the stress resultants, stress couples and shear force
resultants, respectively, and A, B, D and A, are the extensional, extensional-bending
coupling, bending and transverse shear stiffness matrices, respectively, which are defined in
Appendix A.

A two-node straight conical frustum element is used in this investigation ; because a
laminated shell exhibits in-plane extensional-shear, extensional-bending and bending-
twisting couplings, its symmetric and antisymmetric modes are coupled with each other
(Sheinman and Weissman, 1987). For each of the two modes, each node of the element has
five independent degrees of freedom: three displacements and two rotations. Thus, the
nodal displacement vector of an element may be expressed as

as {ai} 5)
"

where
a' = [uieiwi Bl wiBupiY (6)

in which 7 and j denote the front and rear ends of the frustum, respectively, and superscripts
k =1, 2 represent the symmetric and antisymmetric degrees of freedom, respectively.

For free vibration, the displacement field within an element for circumferential wave
number, n, may be expressed as

0’: N 0 ar:
[wwpop]" = [ 0 05N]{83 } ;
where
cos nb 0 0 0 °
0 sin nf 0 0 0
6, = 0 0 cos nf) 0 0 ®
0 0 0 cosnf . 0
0 0 0 0 snnd
sin n 0 0 0 °
0 cos nf) 0 0 0
0, = 0 0 sin nf 0 0 v
. 0 0 sin nh 0
{ 0 0 0 0 cosnf

N = [NIN]) (10)
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in which I<1s the 5 x 5 identity matrix. and N, and N, are the element shape functions defined
as N, =l—nand N, =y with y = s L. Here L is the length of the element meridian.

The Hamilton's variational principle is used here to derive the equation of motion of
the shell. For the shell element considered. the potential energy IT can be written as

n= | (¢'N+o' M+ 7'S)yrLdndo. (1
)

When the rotational inertia is ignored. the kinetic energy of the element T can be expressed
as

A oAy

7 ‘ ph(ir + 1 -+ )L dn do. (12)
o )

v v

T =

l
-

where /1 1s the thickness of the shell wall and a dot represents derivative with respect to
time. Applying the Hamilton’s variational principle and the orthogonal property of the
trigonometric functions gives the stitfness matrix for the element

K_”'{B,‘,, 0]'11'1_3,‘,, 0] {B,',, O}I(BJrB‘)[B’l ()}+[Eh‘ OT
Lo sl e el o & o B [0 B

B0 B 0 ' O
" +(1[‘;\:‘\()1‘33'"‘()

0 B
where B}, = [B;,.B,,]. B, = [B..B.].B' = [B'.B'| (k = 1.2) are defined in Appendix B.
and adopting the notation of Sheinman and Weissman (1987)

Cdp0 A0 0 0 4,8,
1,-0, 150, 0 (0 0 A-.0,
- 0 0 A0 A0 As,0, 0
A= t i ) . . (14)
0 0 Aoy A0 AL0, 0
0 0 Ade A0 4420, 0
ll
A0 4.0, 0 0 0 /11(,5()‘1J

B and D are analogous to A. except that 4, ineqn (14) is replaced by B, and D, respectively,
and

4,,0- 0 0 1,0, |
_ 0 4.0, 4,0, 0
:\ = . . (15)
P A0 0 §]
1400, ] 0 d..0.
where
) [37{ n=40 )1) n =10
0y = < O~ = < .
ln n#0 ~ |n #n#0

In calculating the stiffness matrix from eqn (13). reduced integration should be utilized in
order to avoid “shear locking™ (Zienkiewicz and Taylor. 1989). One point Gauss rule is
used in this paper.
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Fable 1. Natural frequencies (in hertz) for a clamped- free cylindrical steel shellt

" Source m =1 m=2 m =3

f Experiment (Gill. [972) - -
Sharma (1977) — _
To and Wang (1991) 469.0 2054.0 4405.0

This paper 468.2 2043.2 4359.0
2 Experiment (Gill. 1972y 293.0 827.0 1894.0
Sharma (1977) 319.5 1019.7 2398.9
To and Wang (1991) 3157 939.1 2174.0
This paper 3128 926.6 2172.0
R t:xperiment (Gill. 1972) 760.0 886.0 1371.0
Sharma (1977) 769.9 930.4 15154
To and Wang (1991) 766.7 909.8 1444.0
This paper 7628 875.7 1387.9
4 Experiment (Gill. 1972) 1451.0 1503.0 1673.0
Sharma (1977) 1465.8 1525.0 1730.3
To and Wang (1991) 1459.0 1501.0 1677.0
This paper 1453.9 1466.8 1592.3
N Experiment (Gill. 1972 2336.0 2384.0 2480.0
Sharma (1977) 2367.1 2409.5 2513.8
To and Wang (1991} 2334.0 2373.0 2430.0
This paper 23320 2349.6 2360.8

=210 GPa. G =82 GPa. v =028, p=7800 kg m~°, length = 0.502 m,
rudius = 00635 mand /i = 1.62 <10 ‘m.

The niuss matrix for the element is given by

NN 0
M= | ph{ 0 NTC:Nil"Ldm (16)

where y7s mass density of the material and

[0 00 0 0] & 0 0 0 0
O o 0 0 0 0 6 0 0 O
C =170 0 o 0 0 C-=70 0 4, 0 0 (17)
o 0 0 9 0 0 0 4, O
L0000 8y 0 0 0 0 4
For the free vibraton. the cigenvalue problem is given by
(K—x"Ma = 0. (18)

where ¢ i the circular frequency. For a non-trivial solution of eqn (18), the determinant
of the coethicient matrix of the equation must vanish; this yields to the characteristic
cquation

K=-0'M| =0. (19

The cigenvaiues can be extracted by following the general iterative technique.

3 RESULTS AND DISCUSSION

Numerical results are obtained by using the foregoing theory. In all calculations, the
shetl 1s divided into 30 elements. Firstly, two check examples are calculated to verify the
formulation and accuracy of the present analysis.

The first example is a clamped- free thin cylindrical steel shell. The clamped boundary
condition implies v = ¢ = w = f§, = f§, = 0. while at the free end all the nodal degrees of
freedom are unconstrained. The natural frequencies are shown in Table 1 and compared
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Table 2. Natural frequencies (in hertz) of a clamped clamped isotropic conet

n m This paper Srimvasan and Hosur (1989)
0 1 1.094 1.092

0 2 1.382 1.375

0 R 2.069 2.044

0 4 2.620 2630

0 Al 3.030 2993

FTlength R = L1821 Ry =008 ¢ = 10 and v = 0.3,

with experimental results provided by Gill (1972). This problem was studied previously by
Sharma (1977) and To and Wang (1991) using semi-analytical procedures based on the
Kirchhoff-Love hypothesis. Their solutions are shown in Table | for comparison. The
agreement in these results is very good. When transverse shear deformation is considered,
the shell becomes more flexible. Thus. the present results are Jower than the corresponding
ones in the references. When 1 is large and the order of longitudinal modes 1 is high, results
given by this study and by To and Wang (1991) are slightly lower than the experimental
ones. This is perhaps due to the high ratio of the transverse shear modulus to the in-plane
modulus for steel.

The second example is a clamped clamped thick isotropic cone. The natural fre-
quencies are shown in Table 2 and compared with an integral equation solution given by
Srinivasan and Hosur (1989). A good agreement is shown.

The formulation and accuracy of the present analysis are verified by these two exam-
ples. Laminated composite shells of revolution are now investigated. The material properties
for the calculated shells are £, = 206.9 GPa. £. = 1862 GPa. G- =448 GPa. G5 = G-,
Gy = 056G, v =028and p = 2048 kg m

3.1. Thin composite cvlindrical shell

A simply supported (x'0 — %) laminated cvlindrical shell is considered. At one end the
boundary conditions are « = w = f§, = (. whereas at the other end the boundary conditions
are w = f§, = 0. This problem was studied previously by Sheinman and Weissman (1987)
using the semi-analytical method which does not account for transverse shear deformation ;
because the coupling between symmetric and antisvmmetric modes was discussed by Shein-
man and Weissman (1987). the example is used to show the effect of transverse shear
deformation.

The natural frequencies for the (2. 0 —x) shell are listed in Table 3 and compared with
the results given by Sheinman and Weissman (1987). These resuits are for the longitudinal
mode 1. [t can be seen from the table that transverse shear deformation may decrease the
natural frequency of the shell. This phenomenon may be explained intuitively. When
transverse shear deformation is considered. the shell becomes more flexible. Thus, the
present results are lower than the corresponding ones in the reference. It can be seen from
the above discussion that transverse shear deformation should be included in the analysis.

3.2, Thick symmerric cross-ply cones

Figure 2 shows the variation of natural {requency with thickness to radius ratio #; R,
for simply supported thick (0 90 ), cones. 0 and 90 lavers imply the fibres run in the
axial and circumferential directions. respectivelyv. The boundary conditions are r = 1w =0
at both ends. The results are for circumferential wave number 7 = | and longitudinal mode
m = 1. It 1s obvious that the natural frequency increases with the thickness to radius ratio.
Besides, it can also be found from the figure that the natural frequency of a thick symmetric
conical shell increases with its semi-vertex angle ¢». However. this conclusion is not valid
for the thin composite cones, e.g. for i R. = 0.01. the natural frequency of the cone with
¢ = 60 is about 9.9% lower than that of the cone with ¢ = 43 |

Figure 3 shows the variation of natural frequency with thickness 1o radius ratio /i; R,
for (0 /90 ), and (90 0 ), cones. The results are for circumferential wave number n = |
and longitudinal mode m = 1. Clearly. the effect of the stacking sequence on the natural
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l'able 3. Natural frequencies {in hertz) of simply supported («/0/ —«) cylindrical shellst

x (deg)

n Source 0 15 30 45 60 75 90
| Sheinman and Weissman (1987) 330.1 300.9 295.0 360.3 461.8 529.3 5309
This paper 328.9 297.8 286.2 341.7 4432 515.1 5193
2 Sheinman and Weissman (1987) 387.3 372.3 371.1 451.3 567.3 619.3 558.2
This paper 384.8 365.9 355.6 423.7 541.1 601.9 547.8
3 Sheinman and Weissman (1987) 366.8 379.0 387.0 465.3 564.6 5754  469.7
This paper 364.1 371.5 368.5 435.3 539.2 561.8 4634
4 Sheinman and Weissman (1987) 328.3 365.2 384.1 453.5 5239 499.0 388.8
This paper 325.7 357.1 363.2 4234 502.7 489.6 384.7
5 Sheinman and Weissman {1987) 290.1 343.2 372.0 425.4 4634 424.1 341 .4
This paper 287.5 3349 349.8 398.1 447.8 417.7 3384
6 Sheinman and Weissman (1987) 258.9 319.1 353.1 385.0 399.0 367.1 3343
This paper 256.2 310.6 331.2 362.7 387.7 362.1 3319
7 Sheinman and Weissman (1987) 237.8 2972 330.1 342.5 346.6 337.0 3670
This paper 234.7 288.5 309.7 324.7 337.5 3322 3649
&  Sheinman and Weissman (1987) 228.2 281.2 308.8 310.6 316.9 3379 4327
This paper 2247 2723 290.3 295.0 308.0 3324 430.7
9 Sheinman and Weissman (1987) 230.7 274.5 296.2 297.1 313.2 368.9 5235
This paper 226.8 265.1 278.6 281.2 303.2 361.8 5213
10 Sheinman and Weissman (1987) 244 8 2789 296.8 303.8 333.6 423.1  633.7
This paper 240.6 268.9 279.0 286.4 321.8 4149 631.1
11 Sheinman and Weissman (1987) 269.3 2949 3119 328.1 3733 4969 760.2
This paper 264.8 284.4 293.3 309.0 3594 486.1 757.2

tLength = 0.381 m. radius = 0.1905m. 4 = 0.501 x 107" m.

frequency is profound. For h/R, = 0.1, the natural frequency of the (0°/90°), cone is
approximately 11.5% higher than that of the (907/0°), shell.

Figure 4 shows the variation of natural frequency with the circumferential wave
number n for (0 /90°), cones. The results are for longitudinal mode m = 1. The natural
frequency of thick (0°/907), cones increases with the circumferential wave number n. The
lowest natural frequency occurs at » = 1. It can be seen once again that the natural
frequency of thick symmetric cross-ply conical shell increases with its semi-vertex angle ¢.

3.3. Thick antisymmetric angle-ply cones

Figure 5 shows the variation of natural frequency with the ply angle « for simply
supported thick (x —x/x'— =) and (—2/o; — /%) cones. The results are for circumferential
wave number n = | and longitudinal mode m = 1. The effect of the stacking sequence on
the natural frequency of the antisymmetric angle-ply cones is significant in the vicinity of
o = 30 . The natural frequency of the (30 ; —30 /30"/—307) cone is about 7.4% lower than

SOD ' N T L T T T T
N ¢ = 30° ]
;’:‘ 800 + ———— = 45° /_/""’—"_ -

e $ =60 -

> .
g 700+ P |
3 (/ ---------------- 1
a /'/ _____________
T 600+ P -
he e "'__,.
= s00 4
[
=
o
3 a0+

00 ; } f } t t it
0.010 0.020 0.030 0,040 0.050 0.060 0.070 0.080 0,090 0.100
Thickness to radius ratio h/R2

Fig. 2. Natural frequency for simply supported (0°/90°), cones (length/R, = 0.5).
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Fig. 4. Natural frequency for simply supported (0 /90 ), cones (length/R, = 0.5).
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Fig. 5. Natural frequency for simply supported antisymmetric angle-ply cones (¢ = 30", length/

R.=0.5).
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that of the (—30 /30 —30 /30 ) cone. The stacking sequence has negligible effect on the

antisymmetric angle-ply cones with other values of «.

1t is observed from the same figure that the ply angle may significantly affect the
natural frequency of the antisymmetric angle-ply cone. The natural frequency increases to
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Fig. 6. Natural frequency for simply supported ( 45 45 —45 45 ) cones (length. R, = 0.5).

a maximum before it decreases with the ply angle. The peak values of the natural frequency
for the two shells take place at x = 30 . They are 759.6 and 820.4 Hz. respectively.

Figure 6 shows the variation of the natural frequency with the circumferential wave
number n for three (—45 45 —45 45 ) conical shells. The results are for longitudinal
mode /1 = 1. The results in the figure indicate that the natural frequency decreases to a
minimum before it increases with the number of circumferential waves. In addition, for
1 < i < 6. the natural frequency of the cone decreases with its semi-vertex angle ¢, whereas
for 6 < n < 10. the natural frequency of the cone increases with its semi-vertex angle ¢.

4 CONCLUSIONS

The salient features of this investigation are: (1) the semi-analytical method based on
the Reissner Mindlin assumption and considering the coupling between symmetric and
antisymmetric modes 1s developed for predicting free vibration characteristics of laminated
composite shells of revolution: (2) the parametric study is carried out for thin laminated
composite cylindrical shells and thick symmetric cross-ply and antisymmetric angle-ply
laminated composite conical shells. Based on the numerical results presented by this paper,
the following conclusions may be drawn

(1) Transverse shear deformation may reduce the natural frequency of laminated
shells of revolution. Thus. the effect of shear deformation should be included in the analysis.

(2) The etfect of the stacking sequence on the natural frequency of a thick symmetric
cross-ply cone is profound. The natural [requency of a symmetric cross-ply cone increases
with the circumferential wave number. the semi-vertex angle and the thickness to radius
ratio.

(3) The ply angle may significantly affect the natural frequency of a thick anti-
symmetric angle-ply cone. The (30 - 30 30 —30 )and (—30 30 . —30 /30) cones have
higher natural frequency. Although the effect of stacking sequence is strong for o = 307, it
is negligible for the antisymmetric angle-ply cones with other values of . The natural
frequency of an antisvmmetric angle-ply cone first decreases and then increases with its
semi-vertex angle and the number of circumferential waves.
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APPENDIX A CONSTITUTIVE RELATIONS FOR THE LAMINATE

In a ply coordinate svstem |2 3 (see Faig. Al the stress stram relations for any ply are given by (Tsai and
Hahn. 1980):

| 1o
o | ! I
0. 0, 0 0 0 > s
a. 0, [ 0 0 0 .
T 0 Q. 0 o bl > (A1)
. fo 0 0 O, 0 | i
. o 0 0 0 (O

where Q. (i.j = 1.2.4.5.6) are the reduced stifinesses of a ply and are related o material properties of a ply as
follows:
E, vk I3

Lomvavy, - © Tovpan Lovyev = oE

Qs

o | g. 0O, o 0 0 |

_ _ R L

a | (“f“ Q_: ({ 0 0 } ; . }
S I o . 0 0oy, (A3)

T, 0 0 0l On Oy |7 )

T 0 0 0o 0. 0o i

Figo AT Ply and global coordinates.
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Qi = U, +U;cos2x+ U, cos da

0,. = U,—U,cos4da
0 = iUssin2u+ U, sindx
, = U, —U,cos2a+ U, cosda
Qs =1U,sin2x— U, sin4a

0, = Us— U, cos 4
Jus = Qs<sin’ 2+ Q4 cos’
Qi = (Qss— Qus)sinacosa
O:s = Q008" 2+ Qyqsin’ o (Ad)

with x being ply angle and

U = %(3Q|| +30:2+201:+40Q6), U, = ]E(Qn —02)
Uy =200 +Q::—201:—40¢). Uy =101+ 022460, —404)
Us :&(Q11+Q:1A2Q|:+4Qee)- (A5)

The constitutive relations for laminated shells can be obtained by integrating the stresses and stresses
multiplied by the coordinate - through the thickness of the shell as follows :

{le Ay, Ay Ay rﬁ.‘.’ By, By, B XAWL
N:g‘"ﬂ\: A, As: A:(»J‘Cu(*‘ B, B, B Xﬂl

(A6)
Ale An Ace Biy By Bee X

st

Lo C (

_ \AM\] By, By, Bu»“ &, Dy Dy Dy ’X.\

M= M,>=|B. B, Baliey;+|Di2 Da Diglides (A7)
!AM\{ll By, By Bhfvd _":'uaJ Do Dy Des [X,x(lj

S = 5] _ | As Ass |70
S= J]\S\ } - |:A,,‘< Ais:l{}'_\:} (AS)

Equations (A6)-(A8) can be simplified as

NI [A B 0]fe
M:=|B D 0 <}x. (A9)
sl o 0 Al

where N, M and S are vectors of the stress resultants, stress couples and shear force resultants, respectively, and

A, B, D and A, are the extensional, extensional-bending coupling, bending and transverse shear stiffness matrices,
respectively. defined by

oY

(4,.B,.D,) = 0,(..2)dz (i.j=1.2,6)
5 fhs 4,:2 o
A, == o,01- dz (i.j=4,5), (A10)
4., I h?

with / being thickness of the shell wall.

APPENDIX B: STRAIN-DISPLACEMENT MATRICES

—1:L 0 0 0 0
B., = (1—n)sin¢/r n(l—n)ir (1—n)cosgp/r 0 0 (B1)
—n(l—n)ir [—L/L—(1=n)sing¢/r] 0 0 0
1L 0 0 0 0
Bl =lnsingr mir neosgpir 00 (B2)

L o—nnr (1.L—nsing.r) 0 0 0
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0 0 0 1L 0 i
B, = 0 0 0 —(l—p)singir —n(l—=n)/r
{n(lfn)cos d2r"  [—cosd 2rL+(1—n)sin2¢idr] 0 a(l—n).r [(1—n)sing/r+1/L)
(B3)
0 0 0 ~1L 0 1
B, = 0 0 0 ~nsing.r —nnir (B4)
Lmeosd 2r (cos g 2rL+psin2gdrt) 0 ey (nsing/r—1/L)
= 0 ~(l—n)coser —n(l--#)r 0 —(l=n)
I = 5
B, [0 0 ~1L u-p 0 (B3)
s |0 —ncosgir  —mpr 0 —p
B, = [0 0 I L n 0 (B6)
—-1L 0 0 0 0
B, ='(l-nsing r —n(l—n)yr (1—-p)cospr 0 0 (B7)
n(t—n)r (— L L—(l—msing:r) 0 0 (]“
L 0 0 0 0]
B, = K singr —nnr neosgpr 0 0 (B8)
| (1 L—psing r) 0 0 OJ
[ 0 0 0 1L 0
B = 0 0 0 —(I—nising r n(l—n)ir
[—n(l—ry}cosd) 2r [—cosd 2rL+ (1 —p)sin2¢:4r}] 0 —n(l—n)'r [(A=n)sing/r+1/L]
(B9)
0 0 0 —1.L 0
B = 0 0 0 —nsingr nyir (B10)
| -ncosd2r  (cosp.2rL+psin2¢:4r7) 0 —nnpir (nsing/r—1/L)
a8 0 ~(l—nmycosp:ir n(l--n)r 0 —(l—n)
B"—[O 0 —-1.L (1—n) 0 (BI1)
s |0 —wcosgpir mpr 0 —n
B. = [0 0 Lo 0 (BI2)

Here r = r,4+ (r,—r,)n where r, and r, indicate the radius of the element at its small and large ends. respectively.



